Hinton提出深度置信网络(DBN),促使了深度神经网络(DNN)研究的复苏。2009年,Hinton将DNN应用于语音的声学建模,在TIMIT上获得了当时好的结果。2011年底,微软研究院的俞栋、邓力又把DNN技术应用在了大词汇量连续语音识别任务上,降低了语音识别错误率。从此语音识别进入DNN-HMM时代。DNN-HMM主要是用DNN模型代替原来的GMM模型,对每一个状态进行建模,DNN带来的好处是不再需要对语音数据分布进行假设,将相邻的语音帧拼接又包含了语音的时序结构信息,使得对于状态的分类概率有了明显提升,同时DNN还具有强大环境学习能力,可以提升对噪声和口音的鲁棒性。简单来说,DNN就是给出输入的一串特征所对应的状态概率。由于语音信号是连续的,各个音素、音节以及词之间没有明显的边界,各个发音单位还会受到上下文的影响。虽然拼帧可以增加上下文信息,但对于语音来说还是不够。而递归神经网络(RNN)的出现可以记住更多历史信息,更有利于对语音信号的上下文信息进行建模。由于简单的RNN存在梯度炸和梯度消散问题,难以训练,无法直接应用于语音信号建模上,因此学者进一步探索,开发出了很多适合语音建模的RNN结构,其中有名的就是LSTM。特别是远场语音识别已经随着智能音箱的兴起成为全球消费电子领域应用为成功的技术之一。深圳语音识别服务标准
语音识别是一门综合性学科,涉及的领域非常广,包括声学、语音学、语言学、信号处理、概率统计、信息论、模式识别和深度学习等。语音识别的基础理论包括语音的产生和感知过程、语音信号基础知识、语音特征提取等,关键技术包括高斯混合模型(GaussianMixtureModel,GMM)、隐马尔可夫模型(HiddenMarkovModel,HMM)、深度神经网络(DeepNeuralNetwork,DNN),以及基于这些模型形成的GMM-HMM、DNN-HMM和端到端(End-to-End,E2E)系统。语言模型和解码器也非常关键,直接影响语音识别实际应用的效果。为了让读者更好地理解语音信号的特性,接下来我们首先介绍语音的产生和感知机制。语音的产生和感知人的发音qi官包括:肺、气管、声带、喉、咽、鼻腔、口腔和唇。肺部产生的气流冲击声带,产生振动。声带每开启和闭合一次的时间是一个基音周期(Pitchperiod)T,其倒数为基音频率(F0=1/T,基频),范围在70Hz~450Hz。基频越高,声音越尖细,如小孩的声音比大人尖,就是因为其基频更高。基频随时间的变化,也反映声调的变化。人的发音qi官声道主要由口腔和鼻腔组成,它是对发音起重要作用的qi官,气流在声道会产生共振。前面五个共振峰频率(F1、F2、F3、F4和F5)。反映了声道的主要特征。深圳数字语音识别标准由于语音交互提供了更自然、更便利、更高效的沟通形式。
提升用户体验,仍然是要重点解决的问题。口语化。每个说话人的口音、语速和发声习惯都是不一样的,尤其是一些地区的口音(如南方口音、山东重口音),会导致准确率急剧下降。还有电话场景和会议场景的语音识别,其中包含很多口语化表达,如闲聊式的对话,在这种情况下的识别效果也很不理想。因此语音识别系统需要提升自适应能力,以便更好地匹配个性化、口语化表达,排除这些因素对识别结果的影响,达到准确稳定的识别效果。低资源。特定场景、方言识别还存在低资源问题。手机APP采集的是16kHz宽带语音。有大量的数据可以训练,因此识别效果很好,但特定场景如银行/证券柜台很多采用专门设备采集语音,保存的采样格式压缩比很高,跟一般的16kHz或8kHz语音不同,而相关的训练数据又很缺乏,因此识别效果会变得很差。低资源问题同样存在于方言识别,中国有七大方言区,包括官话方言(又称北方方言)、吴语、湘语、赣语、客家话、粤语、闽语(闽南语),还有晋语、湘语等分支,要搜集各地数据(包括文本语料)相当困难。因此如何从高资源的声学模型和语言模型迁移到低资源的场景,减少数据搜集的代价,是很值得研究的方向。语种混杂(code-switch)。在日常交流中。
因此在平台服务上反倒是可以主推一些更为面向未来、有特色的基础服务,比如兼容性方面新兴公司做的会更加彻底,这种兼容性对于一套产品同时覆盖国内国外市场是相当有利的。类比过去的Android,语音交互的平台提供商们其实面临更大的挑战,发展过程可能会更加的曲折。过去经常被提到的操作系统的概念在智能语音交互背景下事实上正被赋予新的内涵,它日益被分成两个不同但必须紧密结合的部分。过去的Linux以及各种变种承担的是功能型操作系统的角色,而以Alexa的新型系统则承担的则是智能型系统的角色。前者完成完整的硬件和资源的抽象和管理,后者则让这些硬件以及资源得到具体的应用,两者相结合才能输出终用户可感知的体验。功能型操作系统和智能型操作系统注定是一种一对多的关系,不同的AIoT硬件产品在传感器(深度摄像头、雷达等)、显示器上(有屏、无屏、小屏、大屏等)具有巨大差异,这会导致功能型系统的持续分化(可以和Linux的分化相对应)。这反过来也就意味着一套智能型系统,必须同时解决与功能型系统的适配以及对不同后端内容以及场景进行支撑的双重责任。这两边在操作上,属性具有巨大差异。解决前者需要参与到传统的产品生产制造链条中去。在安静环境、标准口音、常见词汇场景下的语音识别率已经超过 95%。
直接调用即可开启语音识别功能。RunASR函数代码如下:用户说完话后,LD3320通过打分的方式,将关键词列表中特征**相似的一个作为输出。然后LD3320会产生一个中断信号,此时MCU跳入中断函数读取C5寄存器的值,该值即为识别结果,得到结果后,用户可以根据数值来实现一些功能,比如读取到1,说明是“播放音乐”,那么可以调用前面的PlaySound函数来播放音乐。语音识别控制的关键点在于语音识别的准确率。表1给出了测试结果,当然也可以在识别列表中加入更多的关键词来做测试。通过测试结果可以看出,LD3320的识别率在95%上,能够满足用户需求。4结语本文讨论了基于AVR单片机的语音识别系统设计的可行性,并给出了设计方案。通过多次测试结果表明,本系统具有电路运行稳定,语音识别率高,成本低等优点。同时借助于LD3320的MP3播放功能,该系统具有一定的交互性和娱乐性。移植性方面,系统通过简单的修改,可以很方便地将LD3320驱动程序移植到各种嵌入式系统中。随着人们对人工智能功能的需求,语音识别技术将越来越受到人们的关注,相信不久的将来,语音识别将会拥有更广阔的应用。损失函数通常是Levenshtein距离,对于特定的任务它的数值是不同的。福建语音识别代码
实时语音识别适用于长句语音输入、音视频字幕、会议等场景。深圳语音识别服务标准
发音和单词选择可能会因地理位置和口音等因素而不同。哦,别忘了语言也因年龄和性别而有所不同!考虑到这一点,为ASR系统提供的语音样本越多,它在识别和分类新语音输入方面越好。从各种各样的声音和环境中获取的样本越多,系统越能在这些环境中识别声音。通过专门的微调和维护,自动语音识别系统将在使用过程中得到改进。因此,从基本的角度来看,数据越多越好。的确,目前进行的研究和优化较小数据集相关,但目前大多数模型仍需要大量数据才能发挥良好的性能。幸运的是,得益于数据集存储库的数据收集服务,音频数据的收集变得越发简单。这反过来又增加了技术发展的速度,那么,接下来简单了解一下,未来自动语音识别能在哪些方面大展身手。ASR技术的未来ASR技术已融身于社会。虚拟助手、车载系统和家庭自动化都让日常生活更加便利,应用范围也可能扩大。随着越来越多的人接纳这些服务,技术将进一步发展。除上述示例之外,自动语音识别在各种有趣的领域和行业中都发挥着作用:·通讯:随着全球手机的普及,ASR系统甚至可以为阅读和写作水平较低的社区提供信息、在线搜索和基于文本的服务。深圳语音识别服务标准